Learning agents can optimize standard autonomous navigation improving flexibility, efficiency, and computational cost of the system by adopting a wide variety of approaches. This work introduces the \textit{PIC4rl-gym}, a fundamental modular framework to enhance navigation and learning research by mixing ROS2 and Gazebo, the standard tools of the robotics community, with Deep Reinforcement Learning (DRL). The paper describes the whole structure of the PIC4rl-gym, which fully integrates DRL agent's training and testing in several indoor and outdoor navigation scenarios and tasks. A modular approach is adopted to easily customize the simulation by selecting new platforms, sensors, or models. We demonstrate the potential of our novel gym by benchmarking the resulting policies, trained for different navigation tasks, with a complete set of metrics.
翻译:学习代理商可以通过采用多种方法优化标准自主导航,提高系统的灵活性、效率和计算成本。这项工作引入了\ textit{PIC4rl-gym},这是一个基本的模块化框架,通过将机器人界的标准工具ROS2和Gazebo(机器人界的标准工具)与深强化学习(DRL)混合起来,加强导航和学习研究。本文描述了石化4rl-gym的整个结构,该结构将DRL代理商的培训和测试充分结合到多个室内和室外导航情景和任务中。我们采用了模块化方法,通过选择新的平台、传感器或模型来方便地定制模拟。我们通过对由此产生的政策进行基准化,为不同的导航任务培训,并配有一套完整的衡量标准,展示了我们新健身房的潜力。