We propose a new bound for generalization of neural networks using Koopman operators. Unlike most of the existing works, we focus on the role of the final nonlinear transformation of the networks. Our bound is described by the reciprocal of the determinant of the weight matrices and is tighter than existing norm-based bounds when the weight matrices do not have small singular values. According to existing theories about the low-rankness of the weight matrices, it may be counter-intuitive that we focus on the case where singular values of weight matrices are not small. However, motivated by the final nonlinear transformation, we can see that our result sheds light on a new perspective regarding a noise filtering property of neural networks. Since our bound comes from Koopman operators, this work also provides a connection between operator-theoretic analysis and generalization of neural networks. Numerical results support the validity of our theoretical results.
翻译:我们提出使用库普曼操作员对神经网络进行常规化的新约束。 与大多数现有工程不同, 我们侧重于网络最终非线性转换的作用。 我们的界限由重量矩阵的决定因素对等描述, 当重量矩阵没有小的单值时, 我们的界限比现有的基于规范的界限更紧。 根据现有的关于重量矩阵的低级别理论, 我们关注重量矩阵单值不小的情况可能是反直觉的。 然而, 由最终的非线性转变驱动, 我们可以看到我们的结果揭示了神经网络噪音过滤特性的新视角。 由于我们从库普曼操作员那里得到的界限, 这项工作也提供了操作者理论分析与神经网络一般化之间的联系。 数字结果支持了我们理论结果的有效性 。