Recent advances in web technologies make it more difficult than ever to detect and block web tracking systems. In this work, we propose ASTrack, a novel approach to web tracking detection and removal. ASTrack uses an abstraction of the code structure based on Abstract Syntax Trees to selectively identify web tracking functionality shared across multiple web services. This new methodology allows us to: (i) effectively detect web tracking code even when using evasion techniques (e.g., obfuscation, minification, or webpackaging); and (ii) safely remove those portions of code related to tracking purposes without affecting the legitimate functionality of the website. Our evaluation with the top 10k most popular Internet domains shows that ASTrack can detect web tracking with high precision (98%), while discovering about 50k tracking code pieces and more than 3,400 new tracking URLs not previously recognized by most popular privacy-preserving tools (e.g., uBlock Origin). Moreover, ASTrack achieved a 36% reduction in functionality loss in comparison with the filter lists, one of the safest options available. Using a novel methodology that combines computer vision and manual inspection, we estimate that full functionality is preserved in more than 97% of the websites.


翻译:在这项工作中,我们提议采用ASTrack, 这是一种新颖的网络跟踪检测和清除方法。ASTrack使用基于“简易语库树”的代码结构抽象,有选择地识别多个网络服务共享的网络跟踪功能。这一新的方法使我们能够:(一) 有效检测网络跟踪代码,即使使用规避技术(如混淆、简化或网络包装等),也是如此;(二) 安全地清除与跟踪目的有关的代码中与跟踪目的有关的部分,同时不影响网站的合法功能。我们对最受欢迎的10公里互联网域域的评估结果表明,ASTrack能够以高精度(98%)对网络跟踪进行检测,同时发现大约50公里跟踪代码元件和3 400多个以前多数流行的隐私保护工具(如UBlock起源)没有承认的新的跟踪URL。此外,ASTrack与过滤清单相比,一个最安全的选择方案,在功能损失方面减少了36%。我们使用新颖的方法,将计算机视觉和手工检查结合起来,我们估计,完全的功能将超过97个网站保存到更多。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2021年6月21日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员