Detect-and-Avoid (DAA) capabilities are critical for safe operations of unmanned aircraft systems (UAS). This paper introduces, AirTrack, a real-time vision-only detect and tracking framework that respects the size, weight, and power (SWaP) constraints of sUAS systems. Given the low Signal-to-Noise ratios (SNR) of far away aircraft, we propose using full resolution images in a deep learning framework that aligns successive images to remove ego-motion. The aligned images are then used downstream in cascaded primary and secondary classifiers to improve detection and tracking performance on multiple metrics. We show that AirTrack outperforms state-of-the art baselines on the Amazon Airborne Object Tracking (AOT) Dataset. Multiple real world flight tests with a Cessna 182 interacting with general aviation traffic and additional near-collision flight tests with a Bell helicopter flying towards a UAS in a controlled setting showcase that the proposed approach satisfies the newly introduced ASTM F3442/F3442M standard for DAA. Empirical evaluations show that our system has a probability of track of more than 95% up to a range of 700m. Video available at https://youtu.be/H3lL_Wjxjpw .
翻译:检测和避障(DAA)功能对无人机系统(UAS)的安全运营至关重要。本文介绍了AirTrack,一种实时的纯视觉检测和跟踪框架,它符合sUAS系统的体积、重量和功耗(SWaP)约束。由于远距离飞行器的低信噪比(SNR),我们提出在深度学习框架中使用全分辨率图像来对齐连续的图像以消除自运动。对齐的图像然后在级联的主要和次要分类器中用于提高多个度量的检测和跟踪性能。我们展示了AirTrack在Amazon空中物体跟踪(AOT)数据集上优于现有的基准线。多个与一架Cessna 182互动的通用航空交通和一架Bell直升机朝向一个UAS进行近发生碰撞的试飞以及在受控环境中的额外近发生碰撞的试飞显示,所提出的方法符合新引入的ASTM F3442/F3442M的DAA标准。实证评估显示我们的系统在700米的范围内具有超过95%的跟踪概率。视频链接:https://youtu.be/H3lL_Wjxjpw