For unsupervised pretraining, mask-reconstruction pretraining (MRP) approaches, e.g. MAE and data2vec, randomly mask input patches and then reconstruct the pixels or semantic features of these masked patches via an auto-encoder. Then for a downstream task, supervised fine-tuning the pretrained encoder remarkably surpasses the conventional ``supervised learning'' (SL) trained from scratch. However, it is still unclear 1) how MRP performs semantic feature learning in the pretraining phase and 2) why it helps in downstream tasks. To solve these problems, we first theoretically show that on an auto-encoder of a two/one-layered convolution encoder/decoder, MRP can capture all discriminative features of each potential semantic class in the pretraining dataset. Then considering the fact that the pretraining dataset is of huge size and high diversity and thus covers most features in downstream dataset, in fine-tuning phase, the pretrained encoder can capture as much features as it can in downstream datasets, and would not lost these features with theoretical guarantees. In contrast, SL only randomly captures some features due to lottery ticket hypothesis. So MRP provably achieves better performance than SL on the classification tasks. Experimental results testify to our data assumptions and also our theoretical implications.


翻译:对于未经监督的训练前,蒙面重建前训练(MRP)方法,例如MAE和Data2vec,随机掩码输入补丁,然后通过自动编码器重建这些蒙面补丁的像素或语义特征。然后,在下游任务中,监督对预先训练的编码器进行微调,大大超过常规的“监督学习”(SL)从头到尾训练。然而,目前还不清楚:(1) 蒙面重建在训练前阶段如何进行语义学学习,以及(2) 它为什么有助于下游任务。为了解决这些问题,我们首先理论上表明,在两个/一个层次的变异编码器/变异器的自动编码器上,MRP可以捕捉到在训练前数据集中每个潜在变异类的所有偏差特征。然后,考虑到培训前的数据集规模巨大,差异很大,因此,在微调阶段,预先训练的编码器可以捕捉到下游数据集中的大部分特征。在下游数据设置中可以捕捉到很多特征,我们下游数据设置的双向机级飞行的模型也不会失去这些特征。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员