We are concerned with the computational problem of determining the covering radius of a rational polytope. This parameter is defined as the minimal dilation factor that is needed for the lattice translates of the correspondingly dilated polytope to cover the whole space. As our main result, we describe a new algorithm for this problem, which is simpler, more efficient and easier to implement than the only prior algorithm of Kannan (1992). Motivated by a variant of the famous Lonely Runner Conjecture, we use its geometric interpretation in terms of covering radii of zonotopes, and apply our algorithm to prove the first open case of three runners with individual starting points.
翻译:我们担心的是确定一个理性的聚苯乙烯的覆盖半径的计算问题。 这个参数被定义为一个最小的推力系数, 用于解译一个相对膨胀的聚苯乙烯以覆盖整个空间。 作为我们的主要结果, 我们描述了这个问题的新算法, 比以前唯一的Kannan算法(1992年)更简单、更有效、更容易实施。 我们利用一个著名的Lonely Runner 预测变量, 使用其几何解释来覆盖佐诺珀斯的弧度, 并运用我们的算法来证明三个有个别起点的选手的第一个公开案例。