In this work we develop a model of predictive learning on neuromorphic hardware. Our model uses the on-chip plasticity capabilities of the Loihi chip to remember observed sequences of events and use this memory to generate predictions of future events in real time. Given the locality constraints of on-chip plasticity rules, generating predictions without interfering with the ongoing learning process is nontrivial. We address this challenge with a memory consolidation approach inspired by hippocampal replay. Sequence memory is stored in an initial memory module using spike-timing dependent plasticity. Later, during an offline period, memories are consolidated into a distinct prediction module. This second module is then able to represent predicted future events without interfering with the activity, and plasticity, in the first module, enabling online comparison between predictions and ground-truth observations. Our model serves as a proof-of-concept that online predictive learning models can be deployed on neuromorphic hardware with on-chip plasticity.
翻译:在此工作中,我们开发了一个神经形态硬件预测学习模型。 我们的模型使用Loihi芯片在芯片上的可塑性能力来记住所观察到的事件序列,并利用这一记忆来实时预测未来事件。 鉴于芯片上的可塑性规则的局部限制,在不干扰正在进行的学习过程的情况下作出预测是非三角的。 我们用由河马运动重播所启发的记忆整合方法来应对这一挑战。 序列内存存储在初始记忆模块中, 使用悬浮成瘾的可塑性。 后来, 在离线期间, 记忆被整合到一个不同的预测模块中。 第二模块随后能够在第一个模块中, 在不干扰活动的情况下反映预测的未来事件, 以及塑料性, 使得预测和地面真相观察之间能够进行在线比较。 我们的模型作为一个验证概念, 即在线预测性学习模型可以安装在带有芯片塑料的神经形态硬件上。