This paper proposes and studies a numerical method for approximation of posterior expectations based on interpolation with a Stein reproducing kernel. Finite-sample-size bounds on the approximation error are established for posterior distributions supported on a compact Riemannian manifold, and we relate these to a kernel Stein discrepancy (KSD). Moreover, we prove in our setting that the KSD is equivalent to Sobolev discrepancy and, in doing so, we completely characterise the convergence-determining properties of KSD. Our contribution is rooted in a novel combination of Stein's method, the theory of reproducing kernels, and existence and regularity results for partial differential equations on a Riemannian manifold.
翻译:本文建议并研究一种数字方法,根据Stein再生产内核的内核的内核乘法,近似后端期望近似值的近似值近似值。对紧凑的Riemannian 方程式所支持的后端分布,确定了关于近似误差的微小尺寸界限,我们将这些界限与内核 Stein 差异(KSD ) 联系起来。 此外,我们从我们的背景中可以证明, KSD 相当于 Sobolev 差异, 在这样做时,我们完全体现了KSD 的趋同-确定特性。 我们的贡献植根于Stein的方法、再生产内核理论以及Riemannian 方程式上部分差异方程式的存在和规律性结果的新组合中。