Generating metaphors is a difficult task as it requires understanding nuanced relationships between abstract concepts. In this paper, we aim to generate a metaphoric sentence given a literal expression by replacing relevant verbs. Guided by conceptual metaphor theory, we propose to control the generation process by encoding conceptual mappings between cognitive domains to generate meaningful metaphoric expressions. To achieve this, we develop two methods: 1) using FrameNet-based embeddings to learn mappings between domains and applying them at the lexical level (CM-Lex), and 2) deriving source/target pairs to train a controlled seq-to-seq generation model (CM-BART). We assess our methods through automatic and human evaluation for basic metaphoricity and conceptual metaphor presence. We show that the unsupervised CM-Lex model is competitive with recent deep learning metaphor generation systems, and CM-BART outperforms all other models both in automatic and human evaluations.
翻译:生成隐喻是一项艰巨的任务,因为它要求理解抽象概念之间的细微关系。 在本文中,我们的目标是通过替换相关动词来生成一个对字面表达的比喻句。 在概念隐喻理论的指导下,我们提议通过将认知领域之间的概念映射编码来控制生成过程,以产生有意义的隐喻表达方式。为了实现这一点,我们开发了两种方法:1)使用基于框架网的嵌入式来学习对域的映射,并将其应用于词汇层面(CM-Lex),2)生成源/目标对子,以培训受控后代-等同代模式(CM-BART)。我们通过对基本隐喻和概念隐喻存在进行自动和人文评估的方法。我们表明,未受监督的CM-Lex模型与最近的深学习隐喻生成系统具有竞争力,而CM-BART在自动和人文评估中都优于所有其他模型。