Vision-Language-Action models (VLAs) hold immense promise for enabling generalist robot manipulation. However, the best way to build them remains an open question. Current approaches often add complexity, such as modifying the existing vocabulary of a Vision-Language Model (VLM) with action tokens or introducing special action heads. Curiously, the simplest strategy of representing actions directly as text has remained largely unexplored. This work introduces VLA-0 to investigate this idea. We find that VLA-0 is not only effective; it is surprisingly powerful. With the right design, VLA-0 outperforms more involved models. On LIBERO, a popular benchmark for evaluating VLAs, VLA-0 outperforms all existing methods trained on the same robotic data, including $\pi_0.5$-KI, OpenVLA-OFT and SmolVLA. Furthermore, without large-scale robotics-specific training, it outperforms methods trained on large-scale robotic data, like $\pi_0.5$-KI, $\pi_0$, GR00T-N1 and MolmoAct. These findings also translate to the real world, where VLA-0 outperforms SmolVLA, a VLA model pre-trained on large-scale real data. This paper summarizes our unexpected findings and spells out the specific techniques required to unlock the high performance of this simple yet potent VLA design. Visual results, code, and trained models are provided here: https://vla0.github.io/.
翻译:暂无翻译