Camera anomalies like rain or dust can severelydegrade image quality and its related tasks, such as localizationand segmentation. In this work we address this importantissue by implementing a pre-processing step that can effectivelymitigate such artifacts in a real-time fashion, thus supportingthe deployment of autonomous systems with limited computecapabilities. We propose a shallow generator with aggregation,trained in an adversarial setting to solve the ill-posed problemof reconstructing the occluded regions. We add an enhancer tofurther preserve high-frequency details and image colorization.We also produce one of the largest publicly available datasets1to train our architecture and use realistic synthetic raindrops toobtain an improved initialization of the model. We benchmarkour framework on existing datasets and on our own imagesobtaining state-of-the-art results while enabling real-time per-formance, with up to 40x faster inference time than existingapproaches.
翻译:象雨或灰尘这样的相机异常现象会严重降低图像质量及其相关任务, 如本地化和分割等 。 在这项工作中, 我们通过执行预处理步骤解决这一重要问题, 以实时方式有效提炼这些文物, 从而支持部署计算能力有限的自主系统 。 我们建议使用一个集成的浅色发电机, 训练在对抗环境下解决重建隐蔽区域的错误问题 。 我们增加一个强化器, 进一步保存高频细节和图像颜色化 。 我们还制作了一个最大的公开数据集1, 以训练我们的建筑, 并使用现实的合成雨滴来改进模型的初始化 。 我们以现有的数据集和我们自己的图像为基准框架, 以保持艺术状态的结果, 并允许实时的全景状态, 比现有的应用速度快40x 。