We address the novel task of jointly reconstructing the 3D shape, texture, and motion of an object from a single motion-blurred image. While previous approaches address the deblurring problem only in the 2D image domain, our proposed rigorous modeling of all object properties in the 3D domain enables the correct description of arbitrary object motion. This leads to significantly better image decomposition and sharper deblurring results. We model the observed appearance of a motion-blurred object as a combination of the background and a 3D object with constant translation and rotation. Our method minimizes a loss on reconstructing the input image via differentiable rendering with suitable regularizers. This enables estimating the textured 3D mesh of the blurred object with high fidelity. Our method substantially outperforms competing approaches on several benchmarks for fast moving objects deblurring. Qualitative results show that the reconstructed 3D mesh generates high-quality temporal super-resolution and novel views of the deblurred object.
翻译:我们处理从一个运动模糊图像中联合重建一个对象的3D形状、纹理和运动的新任务。 虽然先前的方法只解决2D图像域中的分解问题, 我们提议的对3D域中所有物体属性的严格建模能够正确描述任意物体运动。 这使得图像分解和分解结果显著改善。 我们用不断翻译和旋转来模拟一个运动模糊对象的观察外观, 把它作为背景和3D对象的组合。 我们的方法通过与合适的调制器的不同图像来尽量减少在重建输入图像方面的损失。 这样可以对模糊对象的3D网格进行高度忠诚的估算。 我们的方法大大优于在快速移动物体分解的几种基准上的竞争方法。 定性结果显示, 重建的 3D网格将产生高质量的超分辨率, 以及腐蚀对象的新观点 。