Prediction markets are powerful tools to elicit and aggregate beliefs from strategic agents. However, in current prediction markets, agents may exhaust the social welfare by competing to be the first to update the market. We initiate the study of the trade-off between how quickly information is aggregated by the market, and how much this information costs. We design markets to aggregate timely information from strategic agents to maximize social welfare. To this end, the market must incentivize agents to invest the correct amount of effort to acquire information: quickly enough to be useful, but not faster (and more expensively) than necessary. The market also must ensure that agents report their information truthfully and on time. We consider two settings: in the first, information is only valuable before a deadline; in the second, the value of information decreases as time passes. We use both theorems and simulations to demonstrate the mechanisms.


翻译:预测市场是吸引和综合战略行为主体的强大工具,然而,在目前的预测市场中,代理人可能通过竞争而耗尽社会福利,成为第一个更新市场的人。我们开始研究如何在市场汇集信息的速度和这种信息成本之间权衡利弊。我们设计市场,以便从战略行为主体中及时汇总信息,从而最大限度地扩大社会福利。为此,市场必须激励代理人投入正确的努力来获取信息:速度足够快,以便有用,但不能比必要更快(而且费用更高)。市场还必须确保代理人真实和及时地报告信息。我们考虑到两种环境:第一,信息只在最后期限之前才有价值;第二,信息的价值随着时间的流逝而减少。我们用理论和模拟来展示机制。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
52+阅读 · 2020年9月7日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
Age of information without service preemption
Arxiv
0+阅读 · 2021年4月29日
Arxiv
0+阅读 · 2021年4月27日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
Top
微信扫码咨询专知VIP会员