Recommender systems have achieved great success in modeling user's preferences on items and predicting the next item the user would consume. Recently, there have been many efforts to utilize time information of users' interactions with items to capture inherent temporal patterns of user behaviors and offer timely recommendations at a given time. Existing studies regard the time information as a single type of feature and focus on how to associate it with user preferences on items. However, we argue they are insufficient for fully learning the time information because the temporal patterns of user preference are usually heterogeneous. A user's preference for a particular item may 1) increase periodically or 2) evolve over time under the influence of significant recent events, and each of these two kinds of temporal pattern appears with some unique characteristics. In this paper, we first define the unique characteristics of the two kinds of temporal pattern of user preference that should be considered in time-aware recommender systems. Then we propose a novel recommender system for timely recommendations, called TimelyRec, which jointly learns the heterogeneous temporal patterns of user preference considering all of the defined characteristics. In TimelyRec, a cascade of two encoders captures the temporal patterns of user preference using a proposed attention module for each encoder. Moreover, we introduce an evaluation scenario that evaluates the performance on predicting an interesting item and when to recommend the item simultaneously in top-K recommendation (i.e., item-timing recommendation). Our extensive experiments on a scenario for item recommendation and the proposed scenario for item-timing recommendation on real-world datasets demonstrate the superiority of TimelyRec and the proposed attention modules.


翻译:建议系统在模拟用户对项目的偏好和预测用户将消耗的下一个项目方面取得了巨大成功。最近,已作出许多努力,利用用户与项目互动的时间信息,以掌握用户行为固有的时间模式,并在特定时间提出及时的建议。现有研究将时间信息视为单一类型特征,并侧重于如何将其与项目用户偏好联系起来。然而,我们认为,由于用户偏好的时间模式通常各异,它们不足以充分学习时间信息。用户偏好特定项目的时间模式可能(1)或2)在近期重大事件的影响下随着时间而变化,这两种时间模式中的每一类都显示出某些独特的时间模式。在本文件中,我们首先确定两种类型的用户偏好时间模式的独特特征,在时间认知建议系统中应考虑的时间类型。我们提出一个新颖的建议系统,即及时检索用户偏好的时间模式,考虑到所有定义的特性。在及时Rec中,两个序列的串联反映了用户偏好时间项目的时间模式,其中每一种类型的时间模式都有某些独特的特点。在本文件中,我们用一个令人感兴趣的模型来评估我们提出的业绩设想方案,同时提出一个建议。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
专知会员服务
53+阅读 · 2019年12月22日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Arxiv
10+阅读 · 2019年2月19日
VIP会员
相关VIP内容
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
专知会员服务
53+阅读 · 2019年12月22日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Top
微信扫码咨询专知VIP会员