Computer-aided diagnosis (CAD) can help pathologists improve diagnostic accuracy together with consistency and repeatability for cancers. However, the CAD models trained with the histopathological images only from a single center (hospital) generally suffer from the generalization problem due to the straining inconsistencies among different centers. In this work, we propose a pseudo-data based self-supervised federated learning (FL) framework, named SSL-FT-BT, to improve both the diagnostic accuracy and generalization of CAD models. Specifically, the pseudo histopathological images are generated from each center, which contains inherent and specific properties corresponding to the real images in this center, but does not include the privacy information. These pseudo images are then shared in the central server for self-supervised learning (SSL). A multi-task SSL is then designed to fully learn both the center-specific information and common inherent representation according to the data characteristics. Moreover, a novel Barlow Twins based FL (FL-BT) algorithm is proposed to improve the local training for the CAD model in each center by conducting contrastive learning, which benefits the optimization of the global model in the FL procedure. The experimental results on three public histopathological image datasets indicate the effectiveness of the proposed SSL-FL-BT on both diagnostic accuracy and generalization.


翻译:计算机辅助诊断(CAD)可以帮助病理学家提高癌症的诊断准确性和一致性,但是仅使用来自单个中心(医院)的组织病理图像训练的CAD模型通常因不同中心之间的扭曲一致性而遭受泛化问题。在本研究中,我们提出了一种基于伪数据的自监督联邦学习(FL)框架,命名为SSL-FT-BT,以提高CAD模型的诊断准确性和泛化性能。具体而言,从每个中心生成伪组织病理图像,其中包含与该中心的真实图像相对应的固有特性,但没有包含隐私信息。然后,在中央服务器上共享这些伪图像进行自监督学习(SSL)。然后,设计了一个多任务SSL,根据数据特征完全学习中心特定信息和通用固有表示。此外,提出了一种基于Barlow Twins的FL(FL-BT)算法,通过进行对比学习改善每个中心中CAD模型的本地训练,从而有益于FL过程中全局模型的优化。在三个公共组织病理图像数据集上的实验结果表明,所提出的SSL-FL-BT在诊断准确性和泛化上都具有有效性。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
基于深度学习的医学图像半监督分割
CVer
14+阅读 · 2020年9月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
22+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
相关基金
国家自然科学基金
22+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员