Disentangling data into interpretable and independent factors is critical for controllable generation tasks. With the availability of labeled data, supervision can help enforce the separation of specific factors as expected. However, it is often expensive or even impossible to label every single factor to achieve fully-supervised disentanglement. In this paper, we adopt a general setting where all factors that are hard to label or identify are encapsulated as a single unknown factor. Under this setting, we propose a flexible weakly-supervised multi-factor disentanglement framework DisUnknown, which Distills Unknown factors for enabling multi-conditional generation regarding both labeled and unknown factors. Specifically, a two-stage training approach is adopted to first disentangle the unknown factor with an effective and robust training method, and then train the final generator with the proper disentanglement of all labeled factors utilizing the unknown distillation. To demonstrate the generalization capacity and scalability of our method, we evaluate it on multiple benchmark datasets qualitatively and quantitatively and further apply it to various real-world applications on complicated datasets.
翻译:将数据分解成可解释和独立的因素对于可控生成任务至关重要。 有了标签数据, 监管可以帮助强制按预期对特定因素进行分离。 但是, 通常很难甚至不可能为每个因素贴上标签, 以便实现完全监管的分解。 在本文中, 我们采用一个总体设置, 将所有难以标签或识别的因素都封装成一个单一的未知因素。 在此设置下, 我们提议一个灵活、 薄弱监督的多因素分解框架不为人知, 将未知因素丢弃出来, 使标签和未知因素的多条件生成成为可能。 具体地说, 采用两阶段培训方法, 以有效而有力的培训方法先解开未知因素, 然后用未知的蒸馏法, 将所有标签因素的适当分解成一个整体。 为了显示我们方法的普遍化能力和可缩缩放性, 我们从质量和数量上对多个基准数据集进行评估, 并进一步将其应用于复杂数据集的各种真实世界应用 。