Doubly robust (DR) estimation is a crucial technique in causal inference and missing data problems. We propose a novel Propensity score Augmentved Doubly robust (PAD) estimator to enhance the commonly used DR estimator for average treatment effect on the treated (ATT), or equivalently, the mean of the outcome under covariate shift. Our proposed estimator attains a lower asymptotic variance than the conventional DR estimator when the propensity score (PS) model is misspecified and the outcome regression (OR) model is correct while maintaining the double robustness property that it is valid when either the PS or OR model is correct. These are realized by introducing some properly calibrated adjustment covariates to linearly augment the PS model and solving a restricted weighted least square (RWLS) problem to minimize the variance of the augmented estimator. Both the asymptotic analysis and simulation studies demonstrate that PAD can significantly reduce the estimation variance compared to the standard DR estimator when the PS model is wrong and the OR is correct, and maintain close performance to DR when the PS model is correct. We further applied our method to study the effects of eligibility for 401(k) plan on the improvement of net total financial assets using data from the Survey of Income and Program Participation of 1991.


翻译:双重稳健(DR)估计是因果推断和缺失数据问题中的关键技术。我们提出了一种新颖的倾向得分增强双重稳健(PAD)估计器,以增强常用的DR估计器来计算当倾向得分错误时的经验处理效应(ATT),或者等价地,协变偏移下的结果均值。当倾向得分模型错误而结果回归模型是正确的时,我们的提议估计器取得了比常规DR估计器更低的渐近方差,同时保持了双重稳健性质,即在PS或OR模型正确的情况下均是有效的。这是通过引入一些经过适当校准的调整协变量来线性增强PS模型,并求解一个受限制的加权最小二乘(RWLS)问题来实现的,以最小化增强估计器的方差。渐近分析和模拟研究都表明,当PS模型错误并且OR是正确的时候,PAD可以显著降低估计方差,相对于标准DR估计器而言,同时在PS模型正确时保持接近DR的性能。我们进一步应用我们的方法来研究1991年收入和方案参与调查数据中401(k)计划的资格对净总金融资产的改善效果。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
专知会员服务
11+阅读 · 2021年7月4日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
论文浅尝 | Language Models (Mostly) Know What They Know
开放知识图谱
0+阅读 · 2022年11月18日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月1日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
31+阅读 · 2020年9月21日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员