Scarcity of high quality annotated images remains a limiting factor for training accurate image segmentation models. While more and more annotated datasets become publicly available, the number of samples in each individual database is often small. Combining different databases to create larger amounts of training data is appealing yet challenging due to the heterogeneity as a result of differences in data acquisition and annotation processes, often yielding incompatible or even conflicting information. In this paper, we investigate and propose several strategies for learning from partially overlapping labels in the context of abdominal organ segmentation. We find that combining a semi-supervised approach with an adaptive cross entropy loss can successfully exploit heterogeneously annotated data and substantially improve segmentation accuracy compared to baseline and alternative approaches.


翻译:缺乏高质量的附加说明图像仍然是培训准确图像分解模型的一个限制因素。虽然越来越多的附加说明的数据集公开提供,但每个数据库的样本数量往往很少。将不同数据库合并以创造更多培训数据是颇具吸引力的,但由于数据获取和批注过程的差异,往往产生不兼容甚至相互矛盾的信息,因此具有挑战性。在本文件中,我们调查并提出了几项战略,以便从腹部器官分解过程中部分重叠的标签中学习。我们发现,将半监督办法与适应性跨倍增损耗相结合,可以成功地利用多式附加说明数据,并大大提高分解准确度,与基线和替代方法相比。

0
下载
关闭预览

相关内容

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。 所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
49+阅读 · 2020年4月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Deep Co-Training for Semi-Supervised Image Segmentation
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
49+阅读 · 2020年4月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关资讯
Top
微信扫码咨询专知VIP会员