We introduce noisy beeping networks, where nodes have limited communication capabilities, namely, they can only emit energy or sense the channel for energy. Furthermore, imperfections may cause devices to malfunction with some fixed probability when sensing the channel, which amounts to deducing a noisy received transmission. Such noisy networks have implications for ultra-lightweight sensor networks and biological systems. We show how to compute tasks in a noise-resilient manner over noisy beeping networks of arbitrary structure. In particular, we transform any algorithm that assumes a noiseless beeping network (of size $n$) into a noise-resilient version while incurring a multiplicative overhead of only $O(\log n)$ in its round complexity, with high probability. We show that our coding is optimal for some tasks, such as node-coloring of a clique. We further show how to simulate a large family of algorithms designed for distributed networks in the CONGEST($B$) model over a noisy beeping network. The simulation succeeds with high probability and incurs an asymptotic multiplicative overhead of $O(B\cdot \Delta \cdot \min(n,\Delta^2))$ in the round complexity, where $\Delta$ is the maximal degree of the network. The overhead is tight for certain graphs, e.g., a clique. Further, this simulation implies a constant overhead coding for constant-degree networks.
翻译:我们引入了噪音蜂窝网络, 节点的通信能力有限, 即它们只能释放能量或感知能量频道。 此外, 不完善可能会导致设备在感应频道时发生故障, 从而在某种固定的概率下发生故障, 这相当于减少接收到的信号传输。 这种噪音网络对超光量传感器网络和生物系统有影响。 我们展示了如何以噪音- 抵抗的方式来计算任务, 而不是任意结构的噪音- 振动网络。 特别是, 我们将任何假设无噪音的振荡网络( 大小为$n美元) 的算法转换成噪音- 静度版本, 同时在频道的圆复杂度中只产生美元( log n) 的多倍复制性间接处理。 我们显示, 我们的编码对于某些任务来说是最佳的, 比如无色色的传感器传感器网络。 我们进一步展示了如何模拟在CONEST( $B$) 模型中为分布式网络设计的大型算法的组合。 模拟的( $B$) 和 噪音- 振动的网络( load bebing net) 网络, rodeal- deal- decal- dal- decal- drodudeal) a exium a excideal a ex excial exal.