We introduce noisy beeping networks, where nodes have limited communication capabilities, namely, they can only emit energy or sense the channel for energy. Furthermore, imperfections may cause devices to malfunction with some fixed probability when sensing the channel, which amounts to deducing a noisy received transmission. Such noisy networks have implications for ultra-lightweight sensor networks and biological systems. We show how to compute tasks in a noise-resilient manner over noisy beeping networks of arbitrary structure. In particular, we transform any algorithm that assumes a noiseless beeping network (of size $n$) into a noise-resilient version while incurring a multiplicative overhead of only $O(\log n)$ in its round complexity, with high probability. We show that our coding is optimal for some tasks, such as node-coloring of a clique. We further show how to simulate a large family of algorithms designed for distributed networks in the CONGEST($B$) model over a noisy beeping network. The simulation succeeds with high probability and incurs an asymptotic multiplicative overhead of $O(B\cdot \Delta \cdot \min(n,\Delta^2))$ in the round complexity, where $\Delta$ is the maximal degree of the network. The overhead is tight for certain graphs, e.g., a clique. Further, this simulation implies a constant overhead coding for constant-degree networks.


翻译:我们引入了噪音蜂窝网络, 节点的通信能力有限, 即它们只能释放能量或感知能量频道。 此外, 不完善可能会导致设备在感应频道时发生故障, 从而在某种固定的概率下发生故障, 这相当于减少接收到的信号传输。 这种噪音网络对超光量传感器网络和生物系统有影响。 我们展示了如何以噪音- 抵抗的方式来计算任务, 而不是任意结构的噪音- 振动网络。 特别是, 我们将任何假设无噪音的振荡网络( 大小为$n美元) 的算法转换成噪音- 静度版本, 同时在频道的圆复杂度中只产生美元( log n) 的多倍复制性间接处理。 我们显示, 我们的编码对于某些任务来说是最佳的, 比如无色色的传感器传感器网络。 我们进一步展示了如何模拟在CONEST( $B$) 模型中为分布式网络设计的大型算法的组合。 模拟的( $B$) 和 噪音- 振动的网络( load bebing net) 网络, rodeal- deal- decal- dal- decal- drodudeal) a exium a excideal a ex excial exal.

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
26+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2021年7月20日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员