Greybox fuzzing is the de-facto standard to discover bugs during development. Fuzzers execute many inputs to maximize the amount of reached code. Recently, Directed Greybox Fuzzers (DGFs) propose an alternative strategy that goes beyond "just" coverage: driving testing toward specific code targets by selecting "closer" seeds. DGFs go through different phases: exploration (i.e., reaching interesting locations) and exploitation (i.e., triggering bugs). In practice, DGFs leverage coverage to directly measure exploration, while exploitation is, at best, measured indirectly by alternating between different targets. Specifically, we observe two limitations in existing DGFs: (i) they lack precision in their distance metric, i.e., averaging multiple paths and targets into a single score (to decide which seeds to prioritize), and (ii) they assign energy to seeds in a round-robin fashion without adjusting the priority of the targets (exhaustively explored targets should be dropped). We propose FishFuzz, which draws inspiration from trawl fishing: first casting a wide net, scraping for high coverage, then slowly pulling it in to maximize the harvest. The core of our fuzzer is a novel seed selection strategy that builds on two concepts: (i) a novel multi-distance metric whose precision is independent of the number of targets, and (ii) a dynamic target ranking to automatically discard exhausted targets. This strategy allows FishFuzz to seamlessly scale to tens of thousands of targets and dynamically alternate between exploration and exploitation phases. We evaluate FishFuzz by leveraging all sanitizer labels as targets. Extensively comparing FishFuzz against modern DGFs and coverage-guided fuzzers shows that FishFuzz reached higher coverage compared to the direct competitors, reproduces existing bugs (70.2% faster), and finally discovers 25 new bugs (18 CVEs) in 44 programs.


翻译:Greybox furzzing 是开发过程中发现错误的脱法标准。 Fuzzers 执行许多投入以最大限度地增加达到的代码数量。 最近, 指导Greybox Fuzzers (DGFs) 提出了一个超越“ 公正” 覆盖范围的替代战略: 通过选择“ 更清洁” 种子, 将测试推向具体的代码目标。 DGF 经历了不同的阶段: 勘探( 到达有趣的地点) 和开发( 触发错误 ) ( 触发错误 ) 。 实际上, DGFs 利用了直接测量勘探的覆盖范围, 而开采的最好以不同目标之间的交替间接衡量。 具体地说, 我们观察到了现有 DGF 规模的两种限制:(i) 它们距离指标不够精确, 也就是说, 将多条路径和目标平均到一个分数( 决定哪个种子优先) ; DGF 以圆杆方式分配种子的能量, 但不调整目标的优先顺序( 彻底探索的目标应该降低 ) 。 我们提议FishFuzz, 将鱼Fu 的激励从拖网捕捞中得出灵感: 首先是网路, 将一个宽网路, 较宽的覆盖面比高覆盖面,, 然后缓慢地将种子的种子的种子的种子的精确的定位, 战略是构建一个核心到最接近一个核心的走向一个核心的顺序的走向最高级的战略, 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月19日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员