Let $G=(V,E)$ be a graph and $P\subseteq V$ a set of points. Two points are mutually visible if there is a shortest path between them without further points. $P$ is a mutual-visibility set if its points are pairwise mutually visible. The mutual-visibility number of $G$ is the size of any largest mutual-visibility set. In this paper we start the study about this new invariant and the mutual-visibility sets in undirected graphs. We introduce the mutual-visibility problem which asks to find a mutual-visibility set with a size larger than a given number. We show that this problem is NP-complete, whereas, to check whether a given set of points is a mutual-visibility set is solvable in polynomial time. Then we study mutual-visibility sets and mutual-visibility numbers on special classes of graphs, such as block graphs, trees, grids, tori, complete bipartite graphs, cographs. We also provide some relations of the mutual-visibility number of a graph with other invariants.


翻译:让 $G = (V, E) $ 是一个图表, $P\ subseteq V 一组点数。 如果两个点之间有一个最短的路径, 没有进一步的点数, 两点是互相可见的。 $P 是一个共同可见的集合。 如果给定的点是双向的, 则其相互可见的集合值为任何最大的共同可见集的大小 。 在本文中, 我们开始在未定向的图表中研究这个新的变量和相互可见集。 我们引入了相互可见的问题, 需要找到一个比给定数大得多的相见集。 我们显示, 这个问题是完整的 NP, 而要检查给定的一组点数是否在多元时间内是相互可见的。 然后我们研究特殊图表类别, 如块图、 树、 网格、 托里、 完整的双向图形、 cograph 上的相互可见集数。 我们还提供一个图表相互可见数的某种关系。

0
下载
关闭预览

相关内容

专知会员服务
84+阅读 · 2020年12月5日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
6+阅读 · 2019年11月14日
VIP会员
相关VIP内容
专知会员服务
84+阅读 · 2020年12月5日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
Top
微信扫码咨询专知VIP会员