Let $V$ be a set of $n$ vertices, ${\cal M}$ a set of $m$ labels, and let $\mathbf{R}$ be an $m \times n$ matrix of independent Bernoulli random variables with success probability $p$. A random instance $G(V,E,\mathbf{R}^T\mathbf{R})$ of the weighted random intersection graph model is constructed by drawing an edge with weight $[\mathbf{R}^T\mathbf{R}]_{v,u}$ between any two vertices $u,v$ for which this weight is larger than 0. In this paper we study the average case analysis of Weighted Max Cut, assuming the input is a weighted random intersection graph, i.e. given $G(V,E,\mathbf{R}^T\mathbf{R})$ we wish to find a partition of $V$ into two sets so that the total weight of the edges having one endpoint in each set is maximized. We initially prove concentration of the weight of a maximum cut of $G(V,E,\mathbf{R}^T\mathbf{R})$ around its expected value, and then show that, when the number of labels is much smaller than the number of vertices, a random partition of the vertices achieves asymptotically optimal cut weight with high probability (whp). Furthermore, in the case $n=m$ and constant average degree, we show that whp, a majority type algorithm outputs a cut with weight that is larger than the weight of a random cut by a multiplicative constant strictly larger than 1. Then, we highlight a connection between the computational problem of finding a weighted maximum cut in $G(V,E,\mathbf{R}^T\mathbf{R})$ and the problem of finding a 2-coloring with minimum discrepancy for a set system $\Sigma$ with incidence matrix $\mathbf{R}$. We exploit this connection by proposing a (weak) bipartization algorithm for the case $m=n, p=\frac{\Theta(1)}{n}$ that, when it terminates, its output can be used to find a 2-coloring with minimum discrepancy in $\Sigma$. Finally, we prove that, whp this 2-coloring corresponds to a bipartition with maximum cut-weight in $G(V,E,\mathbf{R}^T\mathbf{R})$.
翻译:(V,E,\mabf{R}T\mathf{R}) 加权随机交叉图形模型的美元,是用重量来绘制一个边缘 $\mathb{Rcr}美元, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元 以美元 以美元 以美元 以美元 以美元 以美元 以美元