We propose a new convolution called Dynamic Region-Aware Convolution (DRConv), which can automatically assign multiple filters to corresponding spatial regions where features have similar representation. In this way, DRConv outperforms standard convolution in modeling semantic variations. Standard convolution can increase the number of channels to extract more visual elements but results in high computational cost. More gracefully, our DRConv transfers the increasing channel-wise filters to spatial dimension with learnable instructor, which significantly improves representation ability of convolution and maintains translation-invariance like standard convolution. DRConv is an effective and elegant method for handling complex and variable spatial information distribution. It can substitute standard convolution in any existing networks for its plug-and-play property. We evaluate DRConv on a wide range of models (MobileNet series, ShuffleNetV2, etc.) and tasks (Classification, Face Recognition, Detection and Segmentation.). On ImageNet classification, DRConv-based ShuffleNetV2-0.5x achieves state-of-the-art performance of 67.1% at 46M multiply-adds level with 6.3% relative improvement.
翻译:我们提出一个新的革命,称为动态区域-软件革命(DRConv),它可以自动向具有类似代表性的空间区域分配多个过滤器。这样,DRConv在制作语义变异模型时,就优于标准演进。标准演进可以增加频道数量,以提取更多视觉元素,但计算成本高。更优雅地说,我们的DRonv将不断增长的频道过滤器转移到空间层面,由可学习的教员提供,这大大提高了演化的代理能力,并保持了像标准演进那样的翻译不易。DRConv是处理复杂和可变空间信息分布的有效和优雅的方法。DRConv可以替代任何现有网络的插插件和游戏属性的标准演进。我们评估DR Convonv(MobileNet系列,ShuffleNet2,等等)和任务(分类、面辨识、探测和分解)。关于图像网络分类,DRConv-ShuffleNetV2.05x,它是一种处理复杂和6.3%相对水平的67.1%的艺术表现。