In the field of Earth Observation (EO), Continual Learning (CL) algorithms have been proposed to deal with large datasets by decomposing them into several subsets and processing them incrementally. The majority of these algorithms assume that data is (a) coming from a single source, and (b) fully labeled. Real-world EO datasets are instead characterized by a large heterogeneity (e.g., coming from aerial, satellite, or drone scenarios), and for the most part they are unlabeled, meaning they can be fully exploited only through the emerging Self-Supervised Learning (SSL) paradigm. For these reasons, in this paper we propose a new algorithm for merging SSL and CL for remote sensing applications, that we call Continual Barlow Twins (CBT). It combines the advantages of one of the simplest self-supervision techniques, i.e., Barlow Twins, with the Elastic Weight Consolidation method to avoid catastrophic forgetting. In addition, for the first time we evaluate SSL methods on a highly heterogeneous EO dataset, showing the effectiveness of these strategies on a novel combination of three almost non-overlapping domains datasets (airborne Potsdam dataset, satellite US3D dataset, and drone UAVid dataset), on a crucial downstream task in EO, i.e., semantic segmentation. Encouraging results show the superiority of SSL in this setting, and the effectiveness of creating an incremental effective pretrained feature extractor, based on ResNet50, without the need of relying on the complete availability of all the data, with a valuable saving of time and resources.
翻译:在地球观测(EO)领域,提出了持续学习(CL)算法,以应对大型数据集,将之分为几个子集,并逐步处理。由于这些算法中的大多数假设数据是:(a)来自单一来源,和(b)完全贴上标签。现实世界EO数据集的特点是高度异质性(例如来自空中、卫星或无人机情景),而且大多没有标记,这意味着只能通过正在形成的自我超常学习(SSL)模式来充分利用这些数据集。出于这些原因,我们在本文件中提出了将SSL和CL合并用于遥感应用的新算法,我们称之为Contaulual Barlow 双胞胎(CBall-OO)数据集。它结合了最简单的自我监督技术之一的优点,即Barlow Twins,与高超超超超超超超超超超超超超超超超超超超常学习(SSL)方法以避免灾难性的遗忘。此外,我们首次在高度不易变异的 EO(SS)的递增量学习(SSL)中评估SL方法,显示S3级数据流数据流数据的有效性,在SEO3中展示了S-deal-D数据在Slation数据库中, 的快速数据中, 数据在Sleval-Dlationlationaldalslationald数据库中,显示了S-de值数据在Slationaldal ex数据在Slational slevald数据库中,在Slationals ex ex slation上的数据在Slation上的一项关键数据在Slation上,在Slate ex saldaldaldreabreabreabal ex ladaldaldal ex ex ex saldal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal ex ex ex ex sal sal sal sal s