The piecewise quadratic polynomial collocation is used to approximate the nonlocal model, which generally obtain the {\em nonsymmetric indefinite system} [Chen et al., IMA J. Numer. Anal., (2021)]. In this case, the discrete maximum principle is not satisfied, which might be trickier for the stability analysis of the high-order numerical schemes [D'Elia et al., Acta Numer., (2020); Leng et al., SIAM J. Numer. Anal., (2021)]. Here, we present the modified (shifted-symmetric) piecewise quadratic polynomial collocation for solving the linear nonlocal diffusion model, which has the {\em symmetric positive definite system} and satisfies the discrete maximum principle. Using Faulhaber's formula and Riemann zeta function, the perturbation error for symmetric positive definite system and nonsymmetric indefinite systems are given. Then the detailed proof of the convergence analysis for the nonlocal models with the general horizon parameter $\delta=\mathcal{O}\left(h^\beta\right)$, $\beta\geq0$ are provided. More concretely, the global error is $\mathcal{O}\left(h^{\min\left\{2,1+\beta\right\}}\right)$ if $\delta$ is not set as a grid point, but it shall recover $\mathcal{O}\left(h^{\max\left\{2,4-2\beta\right\}}\right)$ when $\delta$ is set as a grid point. We also prove that the shifted-symmetric scheme is asymptotically compatible, which has the global error $\mathcal{O}\left(h^{\min\left\{2,2\beta\right\}}\right)$ as $\delta,h\rightarrow 0$. The numerical experiments (including two-dimensional case) are performed to verify the convergence.
翻译:复方方形的复方形对齐用于接近非本地模型,该模型一般获得 $ 的不对称无限期系统} [Chen 等人, IMA J. Numer. Anal. (2021 ) 。在此情况下, 离异最大原则不能满足, 这对于高阶数字方案的稳定分析来说可能更狡猾 [D'Elia 等人, Acta Numer., (202020年) 列格等人, SIAM J. Numer. Anal. (2021 ) 。 这里, 我们为解决线性非本地扩散模型的修改( 变式对称) 四方形多方形多方形的复方形共和。 使用Faulhaber的公式和riemann zeta 函数, 对正数的正值系统和非正值的变价值( yal) 变价系统和非正值的变价 。 然后,我们对非本地模型的合并分析进行详细证明,一般地平地平地平地平值参数参数值 $\\\\\\\\\\\\\\\\\\\\ maxxxxxxx maxxxxxxxxxxxxxxxxxxxx