The piecewise quadratic polynomial collocation is used to approximate the nonlocal model, which generally obtain the {\em nonsymmetric indefinite system} [Chen et al., IMA J. Numer. Anal., (2021)]. In this case, the discrete maximum principle is not satisfied, which might be trickier for the stability analysis of the high-order numerical schemes [D'Elia et al., Acta Numer., (2020); Leng et al., SIAM J. Numer. Anal., (2021)]. Here, we present the modified (shifted-symmetric) piecewise quadratic polynomial collocation for solving the linear nonlocal diffusion model, which has the {\em symmetric positive definite system} and satisfies the discrete maximum principle. Using Faulhaber's formula and Riemann zeta function, the perturbation error for symmetric positive definite system and nonsymmetric indefinite systems are given. Then the detailed proof of the convergence analysis for the nonlocal models with the general horizon parameter $\delta=\mathcal{O}\left(h^\beta\right)$, $\beta\geq0$ are provided. More concretely, the global error is $\mathcal{O}\left(h^{\min\left\{2,1+\beta\right\}}\right)$ if $\delta$ is not set as a grid point, but it shall recover $\mathcal{O}\left(h^{\max\left\{2,4-2\beta\right\}}\right)$ when $\delta$ is set as a grid point. We also prove that the shifted-symmetric scheme is asymptotically compatible, which has the global error $\mathcal{O}\left(h^{\min\left\{2,2\beta\right\}}\right)$ as $\delta,h\rightarrow 0$. The numerical experiments (including two-dimensional case) are performed to verify the convergence.


翻译:复方方形的复方形对齐用于接近非本地模型,该模型一般获得 $ 的不对称无限期系统} [Chen 等人, IMA J. Numer. Anal. (2021 ) 。在此情况下, 离异最大原则不能满足, 这对于高阶数字方案的稳定分析来说可能更狡猾 [D'Elia 等人, Acta Numer., (202020年) 列格等人, SIAM J. Numer. Anal. (2021 ) 。 这里, 我们为解决线性非本地扩散模型的修改( 变式对称) 四方形多方形多方形的复方形共和。 使用Faulhaber的公式和riemann zeta 函数, 对正数的正值系统和非正值的变价值( yal) 变价系统和非正值的变价 。 然后,我们对非本地模型的合并分析进行详细证明,一般地平地平地平地平值参数参数值 $\\\\\\\\\\\\\\\\\\\\ maxxxxxxx maxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月7日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员