We consolidate two widely believed conjectures about tautologies -- no optimal proof system exists, and most require superpolynomial size proofs in any system -- into a $p$-isomorphism-invariant condition satisfied by all paddable $\textbf{coNP}$-complete languages or none. The condition is: for any Turing machine (TM) $M$ accepting the language, $\textbf{P}$-uniform input families requiring superpolynomial time by $M$ exist (equivalent to the first conjecture) and appear with positive upper density in an enumeration of input families (implies the second). In that case, no such language is easy on average (in $\textbf{AvgP}$) for a distribution applying non-negligible weight to the hard families. The hardness of proving tautologies and theorems is likely related. Motivated by the fact that arithmetic sentences encoding "string $x$ is Kolmogorov random" are true but unprovable with positive density in a finitely axiomatized theory $\mathcal{T}$ (Calude and J{\"u}rgensen), we conjecture that any propositional proof system requires superpolynomial size proofs for a dense set of $\textbf{P}$-uniform families of tautologies encoding "there is no $\mathcal{T}$ proof of size $\leq t$ showing that string $x$ is not Kolmogorov random". This implies the above condition. The conjecture suggests that there is no optimal proof system because undecidable theories help prove tautologies and do so more efficiently as axioms are added, and that constructing hard tautologies seems difficult because it is impossible to construct Kolmogorov random strings. Similar conjectures that computational blind spots are manifestations of noncomputability would resolve other open problems.
翻译:我们整合了两种广泛相信的关于调制语言的推测 -- -- 没有最佳证明系统, 多数需要任何系统中的超球体大小证明 -- -- 以美元为单位, 以所有可粘贴的 $\ textbf{coNP} $- 完整的语言或无。 条件是: 对于任何接受该语言的图灵机器(TM) $M$, $\ textbf{P} $- 单式输入家庭来说, 需要超极球体时间 $( 相当于第一个预测), 并且任何系统中的超球体大小证明( 缩数), 在输入组的计数中, 以正值表示的数值表示( 缩数) 。 这样的语言在平均情况下( $@ textbff{AvgP} 配方对硬值表示调重力。 证明 tautformormations 的算性句号可能与此有关, 因为“ $xormologs” 和“ ormos” 是数字的自动, 无法理解。