We initiate the investigation of the parameterized complexity of Diameter and Connectivity in the streaming paradigm. On the positive end, we show that knowing a vertex cover of size $k$ allows for algorithms in the Adjacency List (AL) streaming model whose number of passes is constant and memory is $O(\log n)$ for any fixed $k$. Underlying these algorithms is a method to execute a breadth-first search in $O(k)$ passes and $O(k \log n)$ bits of memory. On the negative end, we show that many other parameters lead to lower bounds in the AL model, where $\Omega(n/p)$ bits of memory is needed for any $p$-pass algorithm even for constant parameter values. In particular, this holds for graphs with a known modulator (deletion set) of constant size to a graph that has no induced subgraph isomorphic to a fixed graph $H$, for most $H$. For some cases, we can also show one-pass, $\Omega(n \log n)$ bits of memory lower bounds. We also prove a much stronger $\Omega(n^2/p)$ lower bound for Diameter on bipartite graphs. Finally, using the insights we developed into streaming parameterized graph exploration algorithms, we show a new streaming kernelization algorithm for computing a vertex cover of size $k$. This yields a kernel of $2k$ vertices (with $O(k^2)$ edges) produced as a stream in $\text{poly}(k)$ passes and only $O(k \log n)$ bits of memory.


翻译:我们开始在流态范式中调查“对话框”和“连通性”的参数复杂性。 在正向端, 我们显示, 了解一个大小为$k$的顶端覆盖 $k$ 允许在“ 相邻列表( AL) 流式模型” 中进行算法, 其通过次数不变, 内存为$O( log n) 美元, 任何固定的美元美元。 支撑这些算法是一种方法, 在 $( k) 通行证和 $( k\ log n) 的内存中进行宽度第一次搜索。 在负端, 我们可以看到许多其他参数导致AL 模型的底端范围为$( k) 美元, 美元(n/ p) 内存值为$( 美元) 内存值( 美元) 内存值( 美元) 内存值更低的内存值。 内存( 美元内存) 内存( 美元内存) 的内存( 美元内存) 内存( 美元内存( 美元内存) 内存( 美元内存) 内存( 美元内存) 内存( 美元内存) 内存( 内存) 内存) 以内存( 美元内存) 美元内存) 以内存( 内存) 美元内存( 美元内存) 美元内存) 美元内存(美元内存) 内存( 美元内存) 美元内存( 内存) 内存) 内存(美元内存) 内存(美元内存) 内存) 内存(美元内存) 内存) 内存(美元) 内存(美元) 内存(美元) 内存(美元) 内存) 内存) 内存(美元) 内存(美元内存(美元) 内存) 内存(美元) 内存(美元) 内存(美元) 内存) 内存(美元) 内存(美元) 内存) 内存) 内存) 内存(美元) 内存(美元) 内存(美元内存(美元) 内存)

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月1日
Arxiv
0+阅读 · 2022年9月1日
Arxiv
0+阅读 · 2022年9月1日
Arxiv
1+阅读 · 2022年9月1日
Arxiv
0+阅读 · 2022年8月31日
VIP会员
相关资讯
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员