A general numerical method using sum of squares programming is proposed to address the problem of estimating the region of attraction (ROA) of an asymptotically stable equilibrium point of a nonlinear polynomial system. The method is based on Lyapunov theory, and a shape function is defined to enlarge the provable subset of a local Lyapunov function. In contrast with existing methods with a shape function centered at the equilibrium point, the proposed method utilizes a shifted shape function (SSF) with its center shifted iteratively towards the boundary of the newly obtained invariant subset to improve ROA estimation. A set of shifting centers with corresponding SSFs is generated to produce proven subsets of the exact ROA and then a composition method, namely R-composition, is employed to express these independent sets in a compact form by just a single but richer-shaped level set. The proposed method denoted as RcomSSF brings a significant improvement for general ROA estimation problems, especially for non-symmetric or unbounded ROA, while keeping the computational burden at a reasonable level. Its effectiveness and advantages are demonstrated by several benchmark examples from literature.
翻译:提议了一个使用方形编程总和的一般性数字方法,以解决估算非线性多元系统非线性多元系统非线性稳定平衡点的吸引区域(ROA)的问题。该方法以Lyapunov理论为基础,并定义了一个形状函数以扩大本地Lyapunov函数的可变子子集。与以平衡点为核心的形状函数现有方法相比,该拟议方法使用一个变形函数(SSSFF),其中心迭接地转向新获得的变形子的边界,以改善ROA估计。生成了一组带有相应的 SSF 的移动中心,以产生精确的ROA的经证实的子集,然后采用组成方法,即R-composition,以压缩的形式表达这些独立的子集,只是用一个单一但更丰富的形状的集。拟议方法称为RcomSSFF,为一般ROA估计问题的重大改进,特别是非对等度或无界的ROA,同时将计算负担保持在合理水平上。它的有效性和优点通过若干基准文献中的例子得到了证明。