By combining a certain approximation property in the spatial domain, and weighted $\ell_2$-summability of the Hermite polynomial expansion coefficients in the parametric domain obtained in [M. Bachmayr, A. Cohen, R. DeVore and G. Migliorati, ESAIM Math. Model. Numer. Anal. $\bf 51$(2017), 341-363] and [M. Bachmayr, A. Cohen, D. D\~ung and C. Schwab, SIAM J. Numer. Anal. $\bf 55$(2017), 2151-2186], we investigate linear non-adaptive methods of fully discrete polynomial interpolation approximation as well as fully discrete weighted quadrature methods of integration for parametric and stochastic elliptic PDEs with lognormal inputs. We explicitly construct such methods and prove corresponding convergence rates in $n$ of the approximations by them, where $n$ is a number characterizing computation complexity. The linear non-adaptive methods of fully discrete polynomial interpolation approximation are sparse-grid collocation methods. Moreover, they generate in a natural way discrete weighted quadrature formulas for integration of the solution to parametric and stochastic elliptic PDEs and its linear functionals, and the error of the corresponding integration can be estimated via the error in the Bochner space $L_1({\mathbb R}^\infty,V,\gamma)$ norm of the generating methods where $\gamma$ is the Gaussian probability measure on ${\mathbb R}^\infty$ and $V$ is the energy space. We also briefly consider similar problems for parametric and stochastic elliptic PDEs with affine inputs, and by-product problems of non-fully discrete polynomial interpolation approximation and integration. In particular, the convergence rate of non-fully discrete obtained in this paper improves the known one.


翻译:通过将空间域的某些近似属性与[M. Bachmayr、A. Cohen、R. DeVore和G. Migliorati,ESAM Math. 模型. Numer. Anal. $bf 51美元(2017)、341-363和[M. Bachmayr、A. Cohen、D. D ⁇ ung和C. Schwab、SIAM J. Numer. Anal. $\bf 55(2017),2151-21186]在参数域中获取的赫米石墨多元多元多元扩张系数多元扩张系数系数的加权平衡系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数数值的数值数值数值数值数值数值数值数值数值。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员