We analyze statistical discrimination in hiring markets using a multi-armed bandit model. Myopic firms face workers arriving with heterogeneous observable characteristics. The association between the worker's skill and characteristics is unknown ex ante; thus, firms need to learn it. Laissez-faire causes perpetual underestimation: minority workers are rarely hired, and therefore, the underestimation tends to persist. Even a marginal imbalance in the population ratio frequently results in perpetual underestimation. We propose two policy solutions: a novel subsidy rule (the hybrid mechanism) and the Rooney Rule. Our results indicate that temporary affirmative actions effectively alleviate discrimination stemming from insufficient data.
翻译:暂无翻译