The growing impact of preprint servers enables the rapid sharing of time-sensitive research. Likewise, it is becoming increasingly difficult to distinguish high-quality, peer-reviewed research from preprints. Although preprints are often later published in peer-reviewed journals, this information is often missing from preprint servers. To overcome this problem, the PreprintResolver was developed, which uses four literature databases (DBLP, SemanticScholar, OpenAlex, and CrossRef / CrossCite) to identify preprint-publication pairs for the arXiv preprint server. The target audience focuses on, but is not limited to inexperienced researchers and students, especially from the field of computer science. The tool is based on a fuzzy matching of author surnames, titles, and DOIs. Experiments were performed on a sample of 1,000 arXiv-preprints from the research field of computer science and without any publication information. With 77.94 %, computer science is highly affected by missing publication information in arXiv. The results show that the PreprintResolver was able to resolve 603 out of 1,000 (60.3 %) arXiv-preprints from the research field of computer science and without any publication information. All four literature databases contributed to the final result. In a manual validation, a random sample of 100 resolved preprints was checked. For all preprints, at least one result is plausible. For nine preprints, more than one result was identified, three of which are partially invalid. In conclusion the PreprintResolver is suitable for individual, manually reviewed requests, but less suitable for bulk requests. The PreprintResolver tool (https://preprintresolver.eu, Available from 2023-08-01) and source code (https://gitlab.com/ippolis_wp3/preprint-resolver, Accessed: 2023-07-19) is available online.


翻译:暂无翻译

0
下载
关闭预览

相关内容

arXiv(X依希腊文的χ发音,读音如英语的archive)是一个收集物理学、数学、计算机科学与生物学的论文预印本的网站,始于1991年8月14日。截至2008年10月,arXiv.org已收集超过50万篇预印本;至2014年底,藏量达到1百万篇。在2014年时,约以每月8000篇的速度增加。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员