We formulate an effective numerical scheme that can readily, and accurately, calculate the dynamics of weakly interacting multi-pulse solutions of the quintic complex Ginzburg-Landau equation (QCGLE) in one space dimension. The scheme is based on a global centre-manifold reduction where one considers the solution of the QCGLE as the composition of individual pulses plus a remainder function, which is orthogonal to the adjoint eigenfunctions of the linearised operator about a single pulse. This centre-manifold projection overcomes the difficulties of other, more orthodox, numerical schemes, by yielding a fast-slow system describing 'slow' ordinary differential equations for the locations and phases of the individual pulses, and a 'fast' partial differential equation for the remainder function. With small parameter $\epsilon=e^{-\lambda_r d}$ where $\lambda_r$ is a constant and $d>0$ is the pulse separation distance, we write the fast-slow system in terms of first-order and second-order correction terms only, a formulation which is solved more efficiently than the full system. This fast-slow system is integrated numerically using adaptive time-stepping. Results are presented here for two- and three-pulse interactions. For the two-pulse problem, cells of periodic behaviour, separated by an infinite set of heteroclinic orbits, are shown to 'split' under perturbation creating complex spiral behaviour. For the case of three pulse interaction a range of dynamics, including chaotic pulse interaction, are found. While results are presented for pulse interaction in the QCGLE, the numerical scheme can also be applied to a wider class of parabolic PDEs.
翻译:我们制定了一种有效的数值方案,可轻松、准确地计算弱相互作用的多脉冲解在一维五次复数Ginzburg-Landau方程(QCGLE)中的动态。该方案基于全局中心流形约化,其中将QCGLE的解视为单个脉冲加余项函数的组合,该余项函数与围绕单个脉冲的线性化算子的共轭特征函数正交。这个中心流形投影通过产生描述单个脉冲的位置和相位的“慢”常微分方程和描述余项函数的“快”偏微分方程的快慢系统来克服其他更正统的数值方案所遇到的困难。对于小参数$\epsilon=e^{-\lambda_r d}$,其中$\lambda_r$是常数,$d>0$是脉冲间距离,我们仅使用一阶和二阶修正项来写出快慢系统,这种表述比直接求解完整系统更高效。该快慢系统使用自适应时间步进数值积分法进行数值积分。本文提供了两个和三个脉冲相互作用的结果。对于两个脉冲问题,显示了由无限组异宿轨道分隔的周期行为细胞,在受扰动后被“分裂”为复杂的螺旋行为。对于三脉冲相互作用的情况,发现了一系列动力学行为,包括混沌脉冲相互作用。虽然本文针对QCGLE中的脉冲相互作用提供了结果,但是该数值方案也可应用于更广泛的抛物型偏微分方程类问题。