项目名称: 基于Ginzburg-Landau方程的耗散光孤子动力学特性研究

项目编号: No.61205119

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 信息四处

项目作者: 刘彬

作者单位: 南昌航空大学

项目金额: 27万元

中文摘要: 实现全光网络的关键是光开关和光控制技术。而空间光孤子在实现全光控制技术中扮演重要的角色。本项目以Ginzburg-Landau方程为基础的耗散系统为背景,研究耗散空间孤子的动力学特性以及在全光控制中的应用,主要内容包括:(1)相位调制对耗散孤子相互作用(即孤子碰撞)的研究;(2)引入塔形和锥形折射率调制下,我们首次发现了耗散空间孤子的"连续繁殖"动力学特性的物理机制研究;(3)(3+1)维Ginzburg-Landau方程中时空涡旋孤子稳定性以及折射率调制下的涡旋动力学研究。本项目为设计和探索以耗散系统为基础的孤子光学器件提供新的途径和思路

中文关键词: 耗散系统;光孤子;金兹堡-廊道方程;;

英文摘要: The key technique of All Optical Network is the optical switch and controlling of optics. The spatical optical soltion will plays an important role in achieving the All optical controlling. Based on the complex Ginzburg-Landau equation as a dissipative system, our searches in the item mainly focus the dynamics of dissipative spatial solitons with numerical simulation. The summarized results are listed as follows: (1) The study on the controling of interaction between dissipative soliton (collisions of soliton) with variation of relative phase of solitons, in the cubic-quintic complex Ginzburg-Landau equation without viscosity. (2) By inducing tower-shaped or taper-shaped potentials in the two-dimensional complex Ginzburg-Landau equation with the cubic-quintic nonlinearity, we will study the novel dynamics of continuous generation of dissipative soliton. (3) In the (3+1)D complex Ginzburg-Landau equation, we numerically solve the stability vortex soliton. By also inducing the tower-shaped and taper-shaped potentials in the (3+1)D complex Ginzburg-Landau equation, we research the dynamics of vortex. This item will provides new approachs and trains of thought for studying and designing optical device of soliton based on dissipative system.

英文关键词: dissipative system;optical soliton;Ginzburg-Landau equation;;

成为VIP会员查看完整内容
0

相关内容

【经典书】时间序列分析:预测与控制(原书第5版),709页pdf
【AAAI 2022】神经分段常时滞微分方程
专知会员服务
33+阅读 · 2022年1月14日
专知会员服务
125+阅读 · 2021年8月25日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
经典重温:卡尔曼滤波器介绍与理论分析
极市平台
0+阅读 · 2021年10月25日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
【泡泡点云时空-PCL源码解读】ICP点云精配准算法
泡泡机器人SLAM
179+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
小贴士
相关VIP内容
【经典书】时间序列分析:预测与控制(原书第5版),709页pdf
【AAAI 2022】神经分段常时滞微分方程
专知会员服务
33+阅读 · 2022年1月14日
专知会员服务
125+阅读 · 2021年8月25日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员