Parametric surrogate models for partial differential equations (PDEs) are a necessary component for many applications in the computational sciences, and convolutional neural networks (CNNs) have proved as an excellent tool to generate these surrogates when parametric fields are present. CNNs are commonly trained on labeled data based on one-to-one sets of parameter-input and PDE-output fields. Recently, residual-based convolutional physics-informed neural network (CPINN) solvers for parametric PDEs have been proposed to build surrogates without the need for labeled data. These allow for the generation of surrogates without an expensive offline-phase. In this work, we present an alternative formulation termed Deep Convolutional Ritz Method (DCRM) as a parametric PDE solver. The approach is based on the minimization of energy functionals, which lowers the order of the differential operators compared to residual-based methods. Based on studies involving the Poisson equation with a spatially parameterized source term and boundary conditions, we found that CNNs trained on labeled data outperform CPINNs in convergence speed and generalization ability. Surrogates generated from DCRM, however, converge significantly faster than their CPINN counterparts and prove to generalize faster and better than surrogates obtained from both CNNs trained on labeled data and CPINNs. This hints that DCRM could make PDE solution surrogates trained without labeled data possible.


翻译:部分差异方程式(PDEs)的参数替代模型是计算科学中许多应用的必要组成部分,进化神经网络(CNNs)被证明是生成这些模拟的极好的工具。CNNS通常在基于一对一的参数输入和PDE输出字段的标签数据方面接受培训。最近,基于残余的物理信息化神经网络(CPINN)的参数化解决器被提议在不需要贴标签数据的情况下建立代孕器。这些模型可以使代孕器的生成不需昂贵的离线阶段。在这项工作中,我们介绍了一种替代的配方,称为深革命Ritz方法(DCRM),作为参数输入和PDE输出域。这种方法基于能源功能的最小化,这降低了差异操作器的顺序,从而降低了基于空间参数化源术语和边界条件的Poisson方程式(CPN)的排序。我们发现,在CMNPIG和CNPIG的升级能力方面,这种由经过培训的内置的内置的内置的内置数据比CNPI更快。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2020年12月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月26日
Arxiv
0+阅读 · 2022年7月25日
Arxiv
0+阅读 · 2022年7月24日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2020年12月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员