The graph fused lasso -- which includes as a special case the one-dimensional fused lasso -- is widely used to reconstruct signals that are piecewise constant on a graph, meaning that nodes connected by an edge tend to have identical values. We consider testing for a difference in the means of two connected components estimated using the graph fused lasso. A naive procedure such as a z-test for a difference in means will not control the selective Type I error, since the hypothesis that we are testing is itself a function of the data. In this work, we propose a new test for this task that controls the selective Type I error, and conditions on less information than existing approaches, leading to substantially higher power. We illustrate our approach in simulation and on datasets of drug overdose death rates and teenage birth rates in the contiguous United States. Our approach yields more discoveries on both datasets.


翻译:螺纹引信 弧索 -- -- 包括单维引信 弧索 -- -- 被广泛用于重建在图形上成份恒定的信号,这意味着边缘连接的节点往往具有相同的值。我们考虑测试使用图形引信弧索估计的两个连接部件的不同手段。一个天真的程序,例如用Z测试来测量手段的差异,无法控制选择性的I型错误,因为我们测试的假设本身就是数据的一个函数。在这项工作中,我们提议对这一任务进行新的测试,以控制选择性的I型错误,以及信息比现有方法少的条件,从而导致更强大的能量。我们举例说明了我们在模拟中的方法,以及美国毗连地区吸毒过量死亡率和青少年出生率的数据集。我们的方法在这两个数据集上都产生了更多的发现。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员