In this paper, we introduce a new approach based on distance fields to exactly impose boundary conditions in physics-informed deep neural networks. The challenges in satisfying Dirichlet boundary conditions in meshfree and particle methods are well-known. This issue is also pertinent in the development of physics informed neural networks (PINN) for the solution of partial differential equations. We introduce geometry-aware trial functions in artifical neural networks to improve the training in deep learning for partial differential equations. To this end, we use concepts from constructive solid geometry (R-functions) and generalized barycentric coordinates (mean value potential fields) to construct $\phi$, an approximate distance function to the boundary of a domain. To exactly impose homogeneous Dirichlet boundary conditions, the trial function is taken as $\phi$ multiplied by the PINN approximation, and its generalization via transfinite interpolation is used to a priori satisfy inhomogeneous Dirichlet (essential), Neumann (natural), and Robin boundary conditions on complex geometries. In doing so, we eliminate modeling error associated with the satisfaction of boundary conditions in a collocation method and ensure that kinematic admissibility is met pointwise in a Ritz method. We present numerical solutions for linear and nonlinear boundary-value problems over domains with affine and curved boundaries. Benchmark problems in 1D for linear elasticity, advection-diffusion, and beam bending; and in 2D for the Poisson equation, biharmonic equation, and the nonlinear Eikonal equation are considered. The approach extends to higher dimensions, and we showcase its use by solving a Poisson problem with homogeneous Dirichlet boundary conditions over the 4D hypercube. This study provides a pathway for meshfree analysis to be conducted on the exact geometry without domain discretization.
翻译:在本文中, 我们引入基于距离的新方法, 在物理知情的深神经网络中设置边界条件。 在满足 Drichlet 边界条件方面, 在网状层和粒子方法中, 挑战是众所周知的。 这个问题还关系到物理知情神经网络( PINN) 的开发, 以解决部分差异方程式。 我们在人工神经网络中引入了几何认知测试功能, 以改善对部分差异方程的深层次学习培训。 为此, 我们使用来自建设性固体测深( R- 功能) 和通用的巴里中心坐标( 平均值潜在字段) 的概念来构建 $\phi$, 一个接近网状平面的直径边界网络( PINNN) 。 我们使用直径直径直径的直径测试功能, 直径的直径直径直径直线直径直径直径直径直径直径直路径直线路径直路径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直, 直直直至直直直直直直直直直直直直直直直直直直直至直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直至直直直直直直至直直直直直直至直直直直直直直直直直直直直直直直直直直直至直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直至直至直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直