For indications where only unstable reference treatments are available and use of placebo is ethically justified, three-arm `gold standard' designs with an experimental, reference and placebo arm are recommended for non-inferiority trials. In such designs, the demonstration of efficacy of the reference or experimental treatment is a requirement. They have the disadvantage that only little can be concluded from the trial if the reference fails to be efficacious. To overcome this, we investigate novel single-stage, adaptive test strategies where non-inferiority is tested only if the reference shows sufficient efficacy and otherwise $\delta$-superiority of the experimental treatment over placebo is tested. With a properly chosen superiority margin, $\delta$-superiority indirectly shows non-inferiority. We optimize the sample size for several decision rules and find that the natural, data driven test strategy, which tests non-inferiority if the reference's efficacy test is significant, leads to the smallest overall and placebo sample sizes. We proof that under specific constraints on the sample sizes, this procedure controls the family-wise error rate. All optimal sample sizes are found to meet this constraint. We finally show how to account for a relevant placebo drop-out rate in an efficient way and apply the new test strategy to a real life data set.


翻译:对于只能提供不稳定的参考治疗和使用安慰剂的症状,如果只有不稳定的参考治疗方法,而且对安慰剂的使用在道德上是合理的,则建议对非急性试验进行三臂“黄金标准”设计,并带有实验性、参考性和安慰剂臂。在这种设计中,证明参考或实验性治疗的有效性是一项要求。如果参考不有效,则其缺点是无法从试验中得出很小的结论。为了克服这一点,我们调查新的单一阶段适应性测试战略,即非急性性测试战略只有在参考显示足够有效的情况下才进行测试,否则对安慰剂实验性治疗的“黄金标准”的超度就会得到测试。在适当选择的优越性差幅中, $\delta$-超度间接显示非急性性。 我们优化了若干决定规则的样本规模,发现自然数据驱动测试战略,如果参考性测试是重大的,则测试非急性性,导致最小的整体和胎标的样本大小。我们证明在抽样大小的具体限制下,这种程序控制了对家庭有效度的抽样率。我们最后将一个有效的样本应用到一个新的样本。

0
下载
关闭预览

相关内容

专知会员服务
10+阅读 · 2021年2月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【Strata Data Conference】用于自然语言处理的深度学习方法
专知会员服务
48+阅读 · 2019年9月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员