Graph neural networks (GNNs) have been shown to be highly sensitive to the choice of aggregation function. While summing over a node's neighbours can approximate any permutation-invariant function over discrete inputs, Cohen-Karlik et al. [2020] proved there are set-aggregation problems for which summing cannot generalise to unbounded inputs, proposing recurrent neural networks regularised towards permutation-invariance as a more expressive aggregator. We show that these results carry over to the graph domain: GNNs equipped with recurrent aggregators are competitive with state-of-the-art permutation-invariant aggregators, on both synthetic benchmarks and real-world problems. However, despite the benefits of recurrent aggregators, their $O(V)$ depth makes them both difficult to parallelise and harder to train on large graphs. Inspired by the observation that a well-behaved aggregator for a GNN is a commutative monoid over its latent space, we propose a framework for constructing learnable, commutative, associative binary operators. And with this, we construct an aggregator of $O(\log V)$ depth, yielding exponential improvements for both parallelism and dependency length while achieving performance competitive with recurrent aggregators. Based on our empirical observations, our proposed learnable commutative monoid (LCM) aggregator represents a favourable tradeoff between efficient and expressive aggregators.


翻译:显示对聚合功能的选择高度敏感。 在对一个节点的邻居进行汇总时, Cohen-Karlik 等人(2020年) 证明存在固定的聚合问题,因为对不独立的输入物进行汇总无法概括到不封闭的投入物,建议经常的神经网络定期地成为变异的聚合器。我们显示,这些结果会传到图形域:配有经常性聚合器的GNNS与最先进的快速变异变异聚合器相比,在合成基准和现实世界问题方面都具有竞争力。然而,尽管经常的聚合器的好处,它们的美元(V)深度使得它们难以与大图表相平行,更难于在大图表上进行培训。我们发现,为GNNE配置一个精密的聚合器(GNNM是一个针对其潜在空间的混合单项),我们提议了一个框架,用于在可学习性、可交流性、可变异的经常变变异的聚合变异聚合聚合聚合聚合聚合聚合聚合聚合聚合聚合聚合体, 并且这个框架,用于在不断增长的轨道上构建一个可以学习、可复制的磁性硬性硬性硬性硬性硬性硬操作操作者。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
47+阅读 · 2022年10月2日
专知会员服务
25+阅读 · 2021年4月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
ICLR2022图神经网络论文集锦
机器学习与推荐算法
12+阅读 · 2022年2月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月16日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
13+阅读 · 2021年5月25日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
23+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
ICLR2022图神经网络论文集锦
机器学习与推荐算法
12+阅读 · 2022年2月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
0+阅读 · 2023年2月16日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
13+阅读 · 2021年5月25日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
23+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员