This paper proposes a temporal graph neural network model for forecasting of graph-structured irregularly observed time series. Our TGNN4I model is designed to handle both irregular time steps and partial observations of the graph. This is achieved by introducing a time-continuous latent state in each node, following a linear Ordinary Differential Equation (ODE) defined by the output of a Gated Recurrent Unit (GRU). The ODE has an explicit solution as a combination of exponential decay and periodic dynamics. Observations in the graph neighborhood are taken into account by integrating graph neural network layers in both the GRU state update and predictive model. The time-continuous dynamics additionally enable the model to make predictions at arbitrary time steps. We propose a loss function that leverages this and allows for training the model for forecasting over different time horizons. Experiments on simulated data and real-world data from traffic and climate modeling validate the usefulness of both the graph structure and time-continuous dynamics in settings with irregular observations.
翻译:本文提出了用于预测图形结构不规则观测时间序列的时间图神经网络模型。 我们的 TGNN4I 模型旨在处理不规则的时间步骤和部分观测图形。 实现这个目的的途径是在每个节点引入一个持续时间的潜伏状态, 遵循一个由Geded 经常单位(GRU)输出的线性普通分数(ODE) 定义的线性普通分数(ODE) 。 CODE 具有指数衰变和周期动态相结合的明确解决方案。 图形周围的观测通过将图形神经网络层纳入 GRU 状态更新和预测模型而得到考虑。 时间持续动态还使模型能够在任意的时间步骤下作出预测。 我们提议了一个损失函数, 利用这个函数, 并能够对不同时间范围进行预测模型的培训。 模拟数据实验以及来自交通和气候模型的实际世界数据验证了在不规则观测的情况下图形结构和时间- 持续动态的有用性。