In this work, we describe a Bayesian framework for reconstructing the boundaries of piecewise smooth regions in the X-ray computed tomography (CT) problem in an infinite-dimensional setting. In addition to the reconstruction, we are also able to quantify the uncertainty of the predicted boundaries. Our approach is goal oriented, meaning that we directly detect the discontinuities from the data, instead of reconstructing the entire image. This drastically reduces the dimension of the problem, which makes the application of Markov Chain Monte Carlo (MCMC) methods feasible. We show that our method provides an excellent platform for challenging X-ray CT scenarios (e.g., in case of noisy data, limited angle, or sparse angle imaging). We investigate the performance and accuracy of our method on synthetic data as well as on real-world data. The numerical results indicate that our method provides an accurate method in detecting boundaries of piecewise smooth regions and quantifies the uncertainty in the prediction.
翻译:在这项工作中,我们描述一个巴伊西亚框架,用于在无限的维度环境中重建X射线计算断层成像(CT)问题中平滑的片段区域边界;除了重建外,我们还能够量化预测边界的不确定性;我们的方法以目标为导向,即我们直接从数据中检测不连续性,而不是重建整个图像;这大大缩小了问题的规模,使得采用Markov链子蒙特卡洛(MCMC)方法成为可行;我们表明,我们的方法为挑战X射线CT情景提供了极好的平台(例如,在数据吵闹、角度有限或角度模糊的情况下);我们调查了我们合成数据方法的性能和准确性,以及真实世界数据。数字结果表明,我们的方法提供了一种准确的方法,可以探测小光线区域的边界,并消除预测中的不确定性。