Effective data-driven PDE forecasting methods often rely on fixed spatial and / or temporal discretizations. This raises limitations in real-world applications like weather prediction where flexible extrapolation at arbitrary spatiotemporal locations is required. We address this problem by introducing a new data-driven approach, DINo, that models a PDE's flow with continuous-time dynamics of spatially continuous functions. This is achieved by embedding spatial observations independently of their discretization via Implicit Neural Representations in a small latent space temporally driven by a learned ODE. This separate and flexible treatment of time and space makes DINo the first data-driven model to combine the following advantages. It extrapolates at arbitrary spatial and temporal locations; it can learn from sparse irregular grids or manifolds; at test time, it generalizes to new grids or resolutions. DINo outperforms alternative neural PDE forecasters in a variety of challenging generalization scenarios on representative PDE systems.
翻译:有效的由数据驱动的PDE预测方法往往依赖于固定的空间和/或时间分化,这在现实世界的应用中造成了局限性,例如天气预测,需要在此条件下对任意的时空地点进行灵活外推。我们通过采用新的数据驱动方法(DINo)来解决这个问题,即以空间连续功能的连续时间动态模型来模拟PDE的流程。通过隐性神经表示法将空间观测独立地嵌入一个小的隐蔽空间中,而这种通过隐性神经表示法在时间上由学习的 ODE 驱动。这种单独和灵活地处理时间和空间使DINo成为第一个将以下优势结合起来的数据驱动模型。它在任意的空间和时空地点进行外推;它可以从稀少的不规则的电网或多元中学习;在测试时,它会向新的电网或分辨率进行概括。DINo在有代表性的PDE系统上,在各种具有挑战性的一般假设情景中,使替代的神经PDE预报器化。