This paper studies the time series forecasting problem from a whole new perspective. In the existing SOTA time-series representation learning methods, the forecasting models take a sequence of numerical values as input and yield numerical values as output. The existing SOTA models are largely based on Transformer architecture, modified with multiple encoding mechanisms to incorporate the context and semantics around the historical data. In this paper, we approach representation learning of time-series from the paradigm of prompt-based natural language modeling. Inspired by the successes of pre-trained language foundation models, we pose a question about whether these models can also be adapted to solve time-series forecasting. Thus, we propose a new forecasting paradigm: prompt-based time series forecasting (PromptCast). In this novel task, the numerical input and output are transformed into prompts. We frame the forecasting task in a sentence-to-sentence manner which makes it possible to directly apply language models for forecasting purposes. To support and facilitate the research of this task, we also present a large-scale dataset (PISA) that includes three real-world forecasting scenarios. We evaluate different SOTA numerical-based forecasting methods and language generation models such as Bart. The benchmark results with single- and multi-step forecasting settings demonstrate that the proposed prompt-based time series forecasting with language generation models is a promising research direction. In addition, in comparison to conventional numerical-based forecasting, PromptCast shows a much better generalization ability under the zero-shot setting. We believe that the proposed PromptCast task as well as our PISA dataset could provide novel insights and further lead to new research directions in the domain of time-series representation learning and forecasting.
翻译:本文从全新的视角研究时间序列预测问题。 在现有的 SOTA 时间序列代表制学习方法中, 预测模型采用一系列数字值作为输入, 并产生数字值作为输出。 现有的 SOTA 模型主要以变换器结构为基础, 并经过多种编码机制修改, 以纳入历史数据的背景和语义。 在本文中, 我们从快速的自然语言建模模式的范例中, 学习时间序列。 在经过培训的语言基础模型的成功启发下, 我们提出了一个问题: 这些模型是否也可以被调整为解决时间序列预测。 因此, 我们提出了一个新的预测模式: 基于快速的时间序列预测( PromptCast ) 。 在这个新的任务中, 数字输入和输出的模型被转换为快速化。 我们用句到句式的方式将预测任务设置直接应用语言模型来进行预测。 为了支持和促进这项任务的研究, 我们还提出了一个大型的基于时间序列( PISA), 包括三个真实世界预测方案。 因此, 我们用不同的SOITA 预测方法来评估基于时间序列的快速预测方法, 以及语言生成模型的预估测测算。