Deep learning models are modern tools for spatio-temporal graph (STG) forecasting. Though successful, we argue that data scarcity is a key factor limiting their recent improvements. Meanwhile, contrastive learning has been an effective method for providing self-supervision signals and addressing data scarcity in various domains. In view of this, one may ask: can we leverage the additional signals from contrastive learning to alleviate data scarcity, so as to benefit STG forecasting? To answer this question, we present the first systematic exploration on incorporating contrastive learning into STG forecasting. Specifically, we first elaborate two potential schemes for integrating contrastive learning. We then propose two feasible and efficient designs of contrastive tasks that are performed on the node or graph level. The empirical study on STG benchmarks demonstrates that integrating graph-level contrast with the joint learning scheme achieves the best performance. In addition, we introduce four augmentations for STG data, which perturb the data in terms of graph structure, time domain, and frequency domain. Experimental results reveal that the model is not sensitive to the proposed augmentations' semantics. Lastly, we extend the classic contrastive loss via a rule-based strategy that filters out the most semantically similar negatives, yielding performance gains. We also provide explanations and insights based on the above experimental findings. Code is available at https://github.com/liuxu77/STGCL.


翻译:深层学习模型是时空图形(STG)预测的现代工具。 尽管成功,但我们认为数据稀缺是限制其近期改进的关键因素。 同时,对比式学习是提供自我监督信号和解决不同领域数据稀缺问题的有效方法。 有鉴于此,人们可能会问:我们能否利用对比式学习的额外信号来减轻数据稀缺程度,从而有利于STG的预测?为了回答这一问题,我们首次系统地探索将对比性学习纳入STG预测。具体地说,我们首先阐述了两种可能的将对比性学习相结合的计划。我们然后提出了两个在节点或图表级别上执行的对比性任务的可行性和高效设计。关于STG基准的经验研究表明,将图形水平与联合学习计划相结合可以取得最佳效果。此外,我们为STG数据引入了四个增强部分,从图形结构、时间域和频率域的角度来查看数据。实验结果显示,该模型对拟议的增强度不敏感。最后,我们通过基于节点或图形的对比性损失通过基于规则的模型的模型分析,在Se-Syal-I 上扩展了典型的对比性损失。我们通过基于Syal-Servial Ex的Supalalal 的Supalalal 提供基于Sec判结果的Sec。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年10月22日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员