In this paper, we propose two methods for multivariate Hermite interpolation of manifold-valued functions. On the one hand, we approach the problem via computing suitable weighted Riemannian barycenters. To satisfy the conditions for Hermite interpolation, the sampled derivative information is converted into a condition on the derivatives of the associated weight functions. It turns out that this requires the solution of linear systems of equations, but no vector transport is necessary. This approach treats all given sample data points equally and is intrinsic in the sense that it does not depend on local coordinates or embeddings. As an alternative, we consider Hermite interpolation in a tangent space. This is a straightforward approach, where one designated point, for example one of the sample points or (one of) their center(s) of mass, is chosen to act as the base point at which the tangent space is attached. The remaining sampled locations and sampled derivatives are mapped to said tangent space. This requires a vector transport between different tangent spaces. The actual interpolation is then conducted via classical vector space operations. The interpolant depends on the selected base point. The validity and performance of both approaches is illustrated by means of numerical examples.
翻译:在本文中, 我们提出两种方法, 用于多重价值函数的多变量Hermite 内插。 一方面, 我们通过计算适当加权的Riemann 采样中心来解决这个问题。 为满足Hermite 内插条件, 样本衍生衍生物信息被转换成相关加权函数衍生物的条件。 事实证明, 这需要对等方的线性系统进行解决方案, 但不需要矢量迁移。 这种方法平等地对待所有给定的样本数据点, 其内在意义在于它不取决于本地坐标或嵌入。 作为替代办法, 我们考虑在正切空间中进行Hermite 内插。 这是一个直截了当的方法, 即选择一个指定点, 例如一个样点或其质量中心之一, 来作为相近空间的基点。 其余的抽样地点和样本衍生物被映射到上述正切空间。 这需要不同相近空间之间的矢量迁移。 实际的内插体, 然后通过典型的矢量空间操作进行。 这是直观的矢量空间操作方式。 内插方法取决于所选的数值 。