This work introduces efficient symbolic algorithms for quantitative reactive synthesis. We consider resource-constrained robotic manipulators that need to interact with a human to achieve a complex task expressed in linear temporal logic. Our framework generates reactive strategies that not only guarantee task completion but also seek cooperation with the human when possible. We model the interaction as a two-player game and consider regret-minimizing strategies to encourage cooperation. We use symbolic representation of the game to enable scalability. For synthesis, we first introduce value iteration algorithms for such games with min-max objectives. Then, we extend our method to the regret-minimizing objectives. Our benchmarks reveal that our symbolic framework not only significantly improves computation time (up to an order of magnitude) but also can scale up to much larger instances of manipulation problems with up to 2x number of objects and locations than the state of the art.
翻译:这项工作为定量反应合成引入了高效的象征性算法。 我们考虑的是资源限制的机器人操纵者,他们需要与人类互动,以实现线性时间逻辑表达的复杂任务。 我们的框架产生反应性战略,不仅保证任务完成,而且尽可能寻求与人类合作。 我们把互动模式建为双玩游戏,考虑将遗憾最小化战略鼓励合作。 我们使用游戏的象征性表示法来进行可缩放。 作为合成,我们首先为这种带有最小值目标的游戏引入了价值重复算法。 然后,我们将我们的方法推广到遗憾最小化目标。 我们的基准显示,我们的象征性框架不仅大大改进了计算时间(达到一个数量级),而且可以将最多为2x的物体和地点的操纵问题扩大到比艺术状态还要大得多。</s>