The tree pruning process is the key to promoting fruits' growth and improving their productions due to effects on the photosynthesis efficiency of fruits and nutrition transportation in branches. Currently, pruning is still highly dependent on human labor. The workers' experience will strongly affect the robustness of the performance of the tree pruning. Thus, it is a challenge for workers and farmers to evaluate the pruning performance. Intended for a better solution to the problem, this paper presents a novel pruning classification strategy model called "OTSU-SVM" to evaluate the pruning performance based on the shadows of branches and leaves. This model considers not only the available illuminated area of the tree but also the uniformity of the illuminated area of the tree. More importantly, our group implements OTSU algorithm into the model, which highly reinforces robustness of the evaluation of this model. In addition, the data from the pear trees in the Yuhang District, Hangzhou is also used in the experiment. In this experiment, we prove that the OTSU-SVM has good accuracy with 80% and high performance in the evaluation of the pruning for the pear trees. It can provide more successful pruning if applied into the orchard. A successful pruning can broaden the illuminated area of individual fruit, and increase nutrition transportation from the target branch, dramatically elevating the weights and production of the fruits.
翻译:植树过程是促进果实增长和改善果实生产的关键。 目前, 树苗仍高度依赖人类劳动。 工人的经验将极大地影响树苗裁剪的性能。 因此, 工人和农民要评估裁剪的性能是一项挑战。 为了更好地解决问题, 本文展示了一种叫作“ OTSU- SVM” 的新颖的裁剪分类战略模型, 以根据树枝和树叶的阴影来评估裁剪的性能。 这个模型不仅考虑树枝和树叶的光化面积,而且考虑树苗区的统一性。 更重要的是, 我们这个小组将OTSU的算法应用到模型中, 从而大大加强了对裁剪的性能评估。 此外, 来自Yuhang区梨树的数据也用于实验中。 在这个实验中, 我们证明 OTSU- SVM 具有良好的准确性能, 在树枝枝和树叶叶叶叶的光质化区域中, 将80% 和高额性能 扩展到成功的果质生产区域。, 能够提供成功的树皮质的精度, 增长,, 增长 增长 增长, 增长 增长 增长, 增长 增长 增长 增长 增长, 可以提供 增长, 增长 增长 增长 增长 增长 增长, 增长 增长, 增长 增长 增长 增长 增长 增长 增长 增长 目标 增长 增长 增长 增长 增长 目标 增长 增长 增长 增长 增长 增长 增长 增长 增长 目标 增长 增长 增长 。