Quadratic Program(QP) based state-feedback controllers, whose inequality constraints bound the rate of change of control barrier(CBFs) and lyapunov function with a class-$\mathcal{K}$ function of their values, are sensitive to the parameters of these class-$\mathcal{K}$ functions. The construction of valid CBFs, however, is not straightforward, and for arbitrarily chosen parameters of the QP, the system trajectories may enter states at which the QP either eventually becomes infeasible, or may not achieve desired performance. In this work, we pose the control synthesis problem as a differential policy whose parameters are optimized for performance over a time horizon at high level, thus resulting in a bi-level optimization routine. In the absence of knowledge of the set of feasible parameters, we develop a Recursive Feasibility Guided Gradient Descent approach for updating the parameters of QP so that the new solution performs at least as well as previous solution. By considering the dynamical system as a directed graph over time, this work presents a novel way of optimizing performance of a QP controller over a time horizon for multiple CBFs by (1) using the gradient of its solution with respect to its parameters by employing sensitivity analysis, and (2) backpropagating these as well as system dynamics gradients to update parameters while maintaining feasibility of QPs.


翻译:以 Quadratic 程序 (QP) 为基础的基于 州- 州- 州- 州( QP) 的调控控制控制控制器( CBFs), 其不平等性制约与控制屏障( CBFs) 和 lyapunov 函数的变化率的变动率( CDFs) 和 liapunov 函数的值值的值值的值值值的变动率相关, 对这些等级- $\ mathcal{ K} 的值函数十分敏感。 然而, 建造有效的 CBF 参数并非直截了当的, 而对于任意选择 QP 的参数, 系统轨迹可进入 QP 参数最终变得不可行, 或无法达到预期的性能。 在这项工作中, 我们将控制综合参数作为一个差异政策, 其参数的参数在高时空范围内得到优化, 导致双级优化。 在不了解一套可行参数的情况下, 我们开发一个更精确的 性 引导 底底底线 方法, 来保持 将 更新 C 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年8月4日
Arxiv
0+阅读 · 2022年8月4日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员