The task of emotion recognition in conversations (ERC) benefits from the availability of multiple modalities, as offered, for example, in the video-based MELD dataset. However, only a few research approaches use both acoustic and visual information from the MELD videos. There are two reasons for this: First, label-to-video alignments in MELD are noisy, making those videos an unreliable source of emotional speech data. Second, conversations can involve several people in the same scene, which requires the detection of the person speaking the utterance. In this paper we demonstrate that by using recent automatic speech recognition and active speaker detection models, we are able to realign the videos of MELD, and capture the facial expressions from uttering speakers in 96.92% of the utterances provided in MELD. Experiments with a self-supervised voice recognition model indicate that the realigned MELD videos more closely match the corresponding utterances offered in the dataset. Finally, we devise a model for emotion recognition in conversations trained on the face and audio information of the MELD realigned videos, which outperforms state-of-the-art models for ERC based on vision alone. This indicates that active speaker detection is indeed effective for extracting facial expressions from the uttering speakers, and that faces provide more informative visual cues than the visual features state-of-the-art models have been using so far.


翻译:对话中的情绪识别任务(ERC)得益于多种模式的提供,例如基于视频的MELD数据集。然而,只有少数研究方法使用MELD视频中的声学和视觉信息。原因有二:第一,MELD的标签和视频对齐,使这些视频成为情感语音数据的不可靠的来源。第二,对话可以涉及同一场景中的若干人,这需要检测讲出话的人。在本文中,我们证明通过使用最近的自动语音识别和积极语音检测模型,我们能够调整MELD的视频,并捕捉MELD中96.92%的发声者的面部表情表情表达。自我监督语音识别模型的实验表明,经过调整的MELD视频更接近于数据集中的相应语句。最后,我们设计了一个在MELD调整后的视频对面和音频信息的交谈中识别模型,这些图像比ENLD的状态模型更优于ERC的图像模型,仅靠远的直观图像演示提供了远远远的图像检测。这显示式的图像特征表明,通过远远远的图像演示提供了远远远远的面像。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员