In projective clustering we are given a set of n points in $R^d$ and wish to cluster them to a set $S$ of $k$ linear subspaces in $R^d$ according to some given distance function. An $\eps$-coreset for this problem is a weighted (scaled) subset of the input points such that for every such possible $S$ the sum of these distances is approximated up to a factor of $(1+\eps)$. We suggest to reduce the size of existing coresets by suggesting the first $O(\log(m))$ approximation for the case of $m$ lines clustering in $O(ndm)$ time, compared to the existing $\exp(m)$ solution. We then project the points on these lines and prove that for a sufficiently large $m$ we obtain a coreset for projective clustering. Our algorithm also generalize to handle outliers. Experimental results and open code are also provided.


翻译:在投影组群中,我们得到一套n点,以美元为单位,希望根据某些特定的距离函数,将它们分组成一套以美元为单位的以美元为单位的线性子空间。这个问题的美元-核心数是输入点的加权(缩放)子集,这样,对于每一个可能的S美元,这些距离的总和大约等于1美元。我们建议缩小现有核心集的规模,建议用美元(log(m)美元)为单位以美元(ndm)为单位的直线子空间提供第一个$($)近似值,而以美元(ndm)为单位的直线集则以美元(ndm)为单位,而现有的是美元(m)溶解。我们然后将这些点投放到这些线上,并证明对于足够大的美元,我们为投影集组获得了一个核心集。我们的算法也笼统地处理外层。还提供了实验结果和开源代码。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Multidimensional Scaling for Big Data
Arxiv
0+阅读 · 2021年1月14日
Arxiv
0+阅读 · 2021年1月14日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员