While there has been extensive previous work on efficient quantum algorithms for linear differential equations, analogous progress for nonlinear differential equations has been severely limited due to the linearity of quantum mechanics. Despite this obstacle, we develop a quantum algorithm for initial value problems described by dissipative quadratic $n$-dimensional ordinary differential equations. Assuming $R < 1$, where $R$ is a parameter characterizing the ratio of the nonlinearity to the linear dissipation, this algorithm has complexity $T^2\mathrm{poly}(\log T, \log n, \log 1/\epsilon)/\epsilon$, where $T$ is the evolution time and $\epsilon$ is the allowed error in the output quantum state. This is an exponential improvement over the best previous quantum algorithms, whose complexity is exponential in $T$. We achieve this improvement using the method of Carleman linearization, for which we give a novel convergence theorem. This method maps a system of nonlinear differential equations to an infinite-dimensional system of linear differential equations, which we discretize, truncate, and solve using the forward Euler method and the quantum linear system algorithm. We also provide a lower bound on the worst-case complexity of quantum algorithms for general quadratic differential equations, showing that the problem is intractable for $R \ge \sqrt{2}$. Finally, we discuss potential applications of this approach to problems arising in biology as well as in fluid and plasma dynamics.
翻译:虽然先前在线性差异方程式的有效量子算法方面做了大量工作,但非线性差异方程式的类似进展由于量子力学的线性而受到严重限制。尽管存在这一障碍,我们仍针对分解的二次方程式以美元为单位的普通差异方程式描述的初步价值问题开发量子算法。假设1美元 < 1美元为单位,美元是非线性与线性消散之比的一个参数,但这一算法具有复杂性 $T2\2\mathr{poly}(log T, log n, log 1/ 1/epsilon) /\ epsilon$,其中美元是进化时间,美元是输出量性普通差异方程式中允许的错误。 假设美元 < 1美元为单位的最佳量子算法的一个指数性改进,其中的复杂程度以美元为单位。 我们用卡莱曼线性线性线性计算法提供了一种新型的趋同质方程式。 这个方法将非线性差方程式的系统 绘制成一个无限的线性系统, 以线性Rislal-qalal-qalalalal-qalalalalqalqalalalalalalalalalal, 解算法,我们用这个系统在直线性平方程式来显示直方程式的直线性平方程式的直方程式的直方程式的直方程式, 。